Limit Theorems for Coupled Continuous Time Random Walks
نویسندگان
چکیده
Scaling limits of continuous time random walks are used in physics to model anomalous diffusion, in which a cloud of particles spreads at a different rate than the classical Brownian motion. Governing equations for these limit processes generalize the classical diffusion equation. In this article, we characterize scaling limits in the case where the particle jump sizes and the waiting time between jumps are dependent. This leads to an efficient method of computing the limit, and a surprising connection to fractional derivatives.
منابع مشابه
Asymptotic Distributions of the Continuous - TimeRandom
We provide a systematic analysis of the possible asymptotic distributions of one-dimensional continuous-time random walks (CTRWs) by applying the limit theorems of probability theory. Biased and unbiased walks of coupled and decoupled memory are considered. In contrast to previous works concerning decoupled memory and L evy walks, we deal also with arbitrary coupled memory and with jump densiti...
متن کاملLimit Theorems for Continuous Time Random Walks with Slowly Varying Waiting Times
Continuous time random walks incorporate a random waiting time between random jumps. They are used in physics to model particle motion. When the time between particle jumps has a slowly varying probability tail, the resulting plume disperses at a slowly varying rate. The limiting stochastic process is useful for modeling ultraslow diffusion in physics.
متن کاملQuantum Walks
Quantum walks can be considered as a generalized version of the classical random walk. There are two classes of quantum walks, that is, the discrete-time (or coined) and the continuous-time quantum walks. This manuscript treats the discrete case in Part I and continuous case in Part II, respectively. Most of the contents are based on our results. Furthermore, papers on quantum walks are listed ...
متن کاملRandom Walks in Cones
We study the asymptotic behaviour of a multidimensional random walk in a general cone. We find the tail asymptotics for the exit time and prove integral and local limit theorems for a random walk conditioned to stay in a cone. The main step in the proof consists in constructing a positive harmonic function for our random walk under minimal moment restrictions on the increments. For the proof of...
متن کاملHitting times for random walks on vertex-transitive graphs
For random walks on finite graphs, we record some equalities, inequalities and limit theorems (as the size of graph tends to infinity) which hold for vertex-transitive graphs but not for general regular graphs. The main result is a sharp condition for asymptotic exponentiality of the hitting time to a single vertex. Another result is a lower bound for the coefficient of variation of hitting tim...
متن کامل